

The Regge-plus-Resonance (RPR) model for Kaon Production on the Proton and the Neutron

L. De Cruz *, D.G. Ireland **, P. Vancraeyveld *, T. Vrancx *

* Department of Physics and Astronomy, Ghent University, Belgium ** Department of Physics and Astronomy, Glasgow University, UK

Jefferson Lab, May 17-20, 2011

- Motivation (Why should one study $N(\gamma, K)\Lambda$ and $N(\gamma, K)\Sigma$?)
- Models for open strangeness production
- Regge-plus-resonance (RPR) approach to kaon photoproduction
- Kaon production on the proton
 - RPR results for kaon photoproduction DESCRIPTION AND PREDICTION
 - PREDICTION
 PREDICTION
- Kaon photoproduction on the neutron (deuteron)
 - RPR results for kaon photoproduction
 - PREDICTION
- Conclusions and outlook

< 🗇 > < 🖃 >

Models for open strangenes production I

Challenges for model builders

- γ cross sections are of the order of μ b (pion production is mb)
- threshold $\sqrt{s} \approx$ 1.6 GeV (overlapping resonances)
- no obvious indications for dominant resonance(s) in the energy dependence of the cross section (BACKGROUND DIAGRAMS!)

Models for open strangeness production II

Models for electromagnetically induced kaon production

- single-channel (single-step) approaches (KAON-MAID, ...)
- coupled-channel (multi-step) approaches
 - Bonn-Gatchina (coupled-channel partial wave analysis (πN, ηN, KY)) (Sarantsev, Anisovich, Nikonov, Klempt, Thoma ; EPJA 34, 243 (2007))
 - **2** Giessen: (Shklyar, Lenske, Mosel ; PRC **72**, 015210 (2005))
 - EBAC: (Saghai, David, Julá-Diaz, Lee ; EPJA 31, 512 (2007))

Issues with regard to coupled-channel approaches

- highly multidimensional in parameter space
- centered on the real photon data (γ^* ????)
- demanding analysis framework: HR and computer time consuming
- constraining background contributions in the weak channels is challenging

イロト イポト イヨト イヨト

- **????** Economical model for $N(\gamma, K)Y$ and N(e, e'K)Y with few parameters and predictive power????
 - predict results for "neutron" targets from parameters of "proton" targets
 - predict N(e, e'K)Y from fitted $N(\gamma, K)Y$

simple enough such that it can be used in hypernuclear calculations, neutrino-nucleus response calculations,

イロト イポト イヨト イヨト

Models for open strangeness production III

???? Economical model for $N(\gamma, K)Y$ and N(e, e'K)Y with few parameters and predictive power????

- predict results for "neutron" targets from parameters of "proton" targets
- predict N(e, e'K)Y from fitted $N(\gamma, K)Y$

 simple enough such that it can be used in hypernuclear calculations, neutrino-nucleus response calculations,

Regge-inspired models

PHYSICAL REVIEW C 68, 058201 (2003)

Exclusive electromagnetic production of strangeness on the nucleon: Regge analysis of recent data

M. Guidal,¹ J.-M. Laget,² and M. Vanderhaeghen³ ¹*IPN* Orsay, F-91406 Orsay, France ²CEA/Saclay, DAPNIA/SPhN, F-91191 Gif-sur-Yvette Cedex, France ³University Mainz, D-55099 Mainz, Germany (Received 11 August 2003; published 10 November 2003)

The Regge-plus-resonance model I

The RPR strategy: PRC73, 045207 (2006)

- Construct Regge model for high-energy (=background) amplitude, and constrain parameters to the available high-energy data.
- 2 Add resonance contributions (N^* and/or Δ^*) to obtain the full RPR amplitude, and fit parameters to the resonance region data.

RPR Model for Kaon Production

The Regge-plus-resonance (RPR) model II

Background contributions

- Exchange of *K*(494) and *K**(892) Regge trajectories in *t* channel
- Valid for $s \gg$ and forward angles
- Describes gross features of data in the resonance region (duality)

Jan Ryckebusch (Ghent University)

RPR Model for Kaon Production

The Regge-plus-resonance (RPR) model III

Resonant contributions

- enrich Regge background with nucleon and delta resonances
- standard Feynman s-channel diagrams
- EM form factors from Bonn CQM

Resonance physics with the RPR model: the $p(\gamma, K^+)\Lambda$ case I

Resonances used in this analysis:

S ₁₁ (1535)****	S ₁₁ (1650)****	P ₁₁ (1710)***	P ₁₁ (1900) ^m
D ₁₃ (1700)***	P ₁₃ (1720)****	D ₁₃ (1900) ^m	P ₁₃ (1900)**
D ₁₅ (1675)****	F ₁₅ (1680)****	F ₁₅ (2000)**	

*: PDG status

m: missing resonance, predicted by CQMs

Strategy

- consider all possible combinations of above list of resonances
- use a genetic algorithm to find optimum model and its parameters
- the fitness of a particular N* combination and corresponding parameters *a* is determined by: f_{fitness} = 1/(1+χ²(*a*))

CHALLENGE: there are 2048 possible combinations to evaluate !!!

Figure of merit for the 2048 N^* combinations

Figure of merit for the 2048 N^* combinations

Figure of merit for the 2048 N^* combinations

 $\frac{14 \text{ parameters:}}{14 \text{ parameters:}} S_{11}(1535) + S_{11}(1650) + P_{13}(1720) + D_{13}(1900) + P_{13}(1900) + F_{15}(1680) + D_{15}(1675)$ $20 \text{ parameters: all } 11 N^* \text{'s}$

$p(\gamma, K^+)$ Λ : differential cross sections

$p(\gamma, K^+)\vec{\Lambda}$: recoil polarisation

$|p(\vec{\gamma}, K^+)\vec{\Lambda}$: beam-recoil polarisation $O_{x'}$

$p(\vec{\gamma}, \vec{K}^+)\vec{\Lambda}$: beam-recoil polarisation $O_{x'}$

$p(e, e'K^+)\Lambda$: structure functions for $Q^2 = 0.65 \ GeV^2$

$p(\vec{e}, e'K^+)\vec{\Lambda}$: transferred polarisation

Importance of the $P_{13}(1900) / D_{13}(1900)$

P₁₃(1900): ****** PDG status

D₁₃(1900): missing resonance

Jan Ryckebusch (Ghent University)

May 19, 2011 16 / 34

Neutral-kaon production: $p(\gamma, K^0)\Sigma^+$

 $p(\gamma, \mathcal{K}^+)\Sigma^0 \longrightarrow p(\gamma, \mathcal{K}^0)\Sigma^+$

- K(494)-exchange vanishes
- isospin relations at strong vertex

 $g_{\mathcal{K}^{(*)^0\Sigma^+N^{(*)}}} = \sqrt{2}g_{\mathcal{K}^{(*)+\Sigma^0N^{(*)}}}$

• Fit ratio of EM coupling constants $\frac{\kappa_{K^{*0}(892)K^{0}(494)}}{\kappa_{K^{*+}(892)K^{+}(494)}} = 0.05 \pm 0.01$

Fair description of data $(\chi^2/n.d.f. = 3.4)$.

 γ N* K γ K γ

Jan Ryckebusch (Ghent University)

May 19, 2011 17 / 34

K*

Neutral-kaon production : $p(\gamma, K^0)\Sigma^+$ II

Differential cross section and photon asymmetry

Kaon production from the neutron (deuteron) I

Why studying kaon production on the neutron?

The *N*^{*} spectrum according to the Relativistic Constituent Quark Model of the Bonn group

Jan Ryckebusch (Ghent University)

- extract the n(γ, K) Y amplitude: complementary information about N*
- investigate nuclear-medium effects
- study of the hyperon-nucleon potential
 - hypernuclear spectroscopy
 - final-state interactions in ${}^{2}H(\gamma, KY)N$

May 19, 2011 19 / 34

Kaon production from the neutron (deuteron) II

An RPR model for kaon production on the neutron (deuteron)

- Elementary-production operator: RPR model
 - Describes K⁺Λ and K⁺Σ⁰ channels from the proton
 - Parameters for the neutron derived from the ones of the proton (isospin!)
- Dnp-vertex: relativistic

< 67 >

• FSI: $YN \longrightarrow Y'N'$

Kaon production from the free neutron $n(\gamma, K^+)\Sigma^-$ I

р

	Resonance	SAID			
			PRC53(1996)430		
	S ₁₁ (1650)	^κ N*n/ ^κ N*p	-0.22 ± 0.07		
	<i>P</i> ₁₁ (1710)	^κ N*n/ ^κ N*p	-0.29 ± 2.23		
	P ₁₃ (1720)	$\frac{\frac{\kappa_{N^*n}^{(1)}}{\kappa_{N^*p}^{(1)}}$	-0.38 ± 2.00		
		$\frac{\kappa^{(2)}_{N^*n}}{\kappa^{(2)}_{N^*p}}$	-0.50 ± 1.08		
			Unknown		
	P ₁₃ (1900)	$\frac{\frac{\kappa_{N^*n}^{(1)}}{\kappa_{N^*p}^{(1)}}$	0.00 ± 2.00		
		$\frac{\kappa_{N^*n}^{(2)}}{\kappa_{N^*n}^{(2)}}$	0.00 ± 2.00		
Pł	Photocoupling helicity				
ar	amplitudes from SAID analysis				

$$\begin{array}{l} (\gamma, {\mathcal K}^+) \Sigma^0 \longrightarrow n(\gamma, {\mathcal K}^+) \Sigma^- \\ \bullet \text{ isospin relations at strong} \\ \text{vertex} \\ g_{{\mathcal K}^{(*)+}\Sigma^- {\mathcal N}^{(*)0}} = \sqrt{2} \, g_{{\mathcal K}^{(*)+}\Sigma^0 {\mathcal N}^{(*)+}} \\ \sqrt{2} \, g_{{\mathcal K}^+\Sigma^- {\Delta}^{*0}} = g_{{\mathcal K}^+\Sigma^0 {\Delta}^{*+}} \end{array}$$

• ratio of helicity amplitudes at $\frac{\text{EM vertex}}{\frac{\kappa_{nN^*}}{\kappa_{pN^*}}} = \frac{\mathcal{A}_{1/2}^n}{\mathcal{A}_{1/2}^p}, \dots$

RPR Model for Kaon Production

<u>Kaon production from the free neutron $n(\gamma, K^+)\Sigma^- \Pi$ </u>

Kaon production from the free neutron $n(\gamma, K^+)\Sigma^-$ III

Kaon production from the deuteron: formalism (I)

Plane-wave impulse approximation

- covariant Dnp-vertex
- elementary-production operator: Regge-plus-resonance model

Hyperon-nucleon final-state interactions

• hyperon-nucleon interaction: Juelich model

< 34

Kaon production from the deuteron: formalism (II)

Hyperon-nucleon final-state interactions

$$= \frac{-i}{32\pi^2} \int d\Omega_{N'} \frac{|\vec{p}_{N'}^*|}{W_{YN}} \mathcal{M}(YN \to Y'N')$$
$$\times \overline{u}_{Y'} \Gamma_{\mathsf{RPR}}^{\lambda_{\gamma}} \frac{m_N + \not p_T}{m_N^2 - \rho_T^2} \Gamma_{\mathsf{Dnp}}^{\lambda_{\mathcal{D}}} \mathcal{C} \overline{u}_{N'}^T$$

Hyperon-nucleon interaction

- Juelich model (PRC72(2005)044005)
- elastic + inelastic rescattering
- restrict to on-shell rescattering
- no sub-threshold production

RPR predictions for ${}^{2}H(\gamma, K^{0})YN$

RPR predictions for ${}^{2}H(\gamma, K^{0})YN$

LNS: PRC78 (2008) 014001

- Semi-inclusive K^0 production = $K^0 \Lambda + K^0 \Sigma^0 + K^0 \Sigma^+$
- Only forward angles $\frac{d\sigma}{d\rho_{K}} = 2\pi \int_{0.9}^{1.0} \frac{d\sigma}{d\rho_{K} d\Omega_{K}} d\cos\theta_{K}$

RPR predictions

•
$$\langle E_{\gamma}^{lab}
angle = 950 \, \mathrm{MeV}$$

- near $K^0\Sigma$ threshold
- data is underpredicted
- $\langle E_{\gamma}^{lab}
 angle = 1050 \, {
 m MeV}$
 - 2 quasi-elastic peaks
 - good predictions
- effect of "YN" FSI is small

May 19, 2011 26 / 34

Conclusions

These are exciting times for modelers in open strangeness production (high-quality data over extended energy range, proton AND neutron targets, single and double polarization data, complete measurements, hypernuclear results at the horizon)

Regge-plus-resonance (RPR) approach

- fixes Regge background at high energies
- adds N^* 's and Δ^* 's in the **resonance region**
- economical and gauge-invariant description of $K^+\Lambda$ and $K^+\Sigma^0$ channels for threshold $\leq E_{\gamma}^{lab} \leq 16 \,\text{GeV}$

RPR has predictive power

- K⁰ production
- electroproduction
- K production from the neutron (deuteron)

